Georgia Department of Education

GSE Fourth Grade Curriculum Map							
Unit 1	Unit 2	Unit 3	Unit 4	Unit 5	Unit 6	Unit 7	Unit 8
Whole Numbers, Place Value and Rounding In Computation	Multiplication and Division of Whole Numbers	Fraction Equivalents	Operations with Fractions	Fractions and Decimals	Geometry	Measurement	Show What We Know
MGSE4.NBT. 1 MGSE4.NBT. 2 MGSE4.NBT. 3 MGSE4.NBT. 4 MGSE4.0A. 3 MGSE4.MD. 2	MGSE4.0A. 1 MGSE4.OA. 2 MGSE4.0A. 3 MGSE4.OA. 4 MGSE4.OA. 5 MGSE4.NBT. 5 MGSE4.NBT. 6 MGSE4.MD. 2 MGSE4.MD. 8	$\begin{aligned} & \text { MGSE4.NF. } 1 \\ & \text { MGSE4.NF. } 2 \\ & \text { MGSE4.MD. } 2 \end{aligned}$	MGSE4.NF. 3 MGSE4.NF. 4 MGSE4.MD. 2	MGSE4.NF. 5 MGSE4.NF. 6 MGSE4.NF. 7 MGSE4.MD. 2	MGSE4.G. 1 MGSE4.G. 2 MGSE4.G. 3	MGSE4.MD. 1 MGSE4.MD. 2 MGSE4.MD. 3 MGSE4.MD. 4 MGSE4.MD. 5 MGSE4.MD. 6 MGSE4.MD. 7 MGSE4.MD. 8	ALL
These units were written to build upon concepts from prior units, so later units contain tasks that depend upon the concepts addressed in earlier units. All units will include the Mathematical Practices and indicate skills to maintain. However, the progression of the units is at the discretion of districts.							

Grades 3-5 Key: G= Geometry, MD=Measurement and Data, NBT= Number and Operations in Base Ten, NF = Number and Operations, Fractions, OA = Operations and Algebraic Thinking.

Georgia Department of Education

GSE Fourth Grade

GSE Fourth Grade Expanded Curriculum Map

Standards for Mathematical Practice			
1 Make sense of problems and persevere in s 2 Reason abstractly and quantitatively. 3 Construct viable arguments and critique the 4 Model with mathematics.	ng them. soning of others.	5 Use appropriate tools strategically. 6 Attend to precision. 7 Look for and make use of structure. 8 Look for and express regularity in repeated reasoning.	
Unit 1	Unit 2	Unit 3	Unit 4
Whole Numbers, Place Value and Rounding in Computation	Multiplication and Division of Whole Numbers	Fraction Equivalents	Operations with Fractions
Generalize place value understanding for multi-digit whole numbers. ${ }^{1}$ MGSE4.NBT. 1 Recognize that in a multidigit whole number, a digit in any one place represents ten times what it represents in the place to its right. For example, recognize that $700 \div 70=10$ by applying concepts of place value and division. MGSE4.NBT. 2 Read and write multi-digit whole numbers using base-ten numerals, number names, and expanded form. Compare two multi-digit numbers based on meanings of the digits in each place, using >, $=$, and < symbols to record the results of comparisons. MGSE4.NBT. 3 Use place value understanding to round multi-digit whole numbers to any place. Use place value understanding and properties of operations to perform multidigit arithmetic. MGSE4.NBT. 4 Fluently add and subtract multi-digit whole numbers using the standard algorithm. Use the four operations with whole numbers to solve problems. MGSE4.OA. 3 Solve multistep word problems with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent	Use the four operations with whole numbers to solve problems. MGSE4.OA. 1 Understand that a multiplicative comparison is a situation in which one quantity is multiplied by a specified number to get another quantity. a. Interpret a multiplication equation as a comparison e.g., interpret $35=5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times as many as 5 . b. Represent verbal statements of multiplicative comparisons as multiplication equations. MGSE4.OA. 2 Multiply or divide to solve word problems involving multiplicative comparison. Use drawings and equations with a symbol or letter for the unknown number to represent the problem, distinguishing multiplicative comparison from additive comparison. ${ }^{2}$ MGSE4.OA. 3 Solve multistep word problems with whole numbers and having whole-number answers using the four operations, including problems in which remainders must be interpreted. Represent these problems using equations with a symbol or letter standing for the unknown quantity. Assess the reasonableness of	Extend understanding of fraction equivalence and ordering. ${ }^{3}$ MGSE4.NF. 1 Explain why two or more fractions are equivalent $\frac{a}{b}=\frac{n \times a}{n \times b}$ ex: $\frac{1}{4}=$ $\frac{3 \times 1}{3 \times 4}$ by using visual fraction models. Focus attention on how the number and size of the parts differ even though the fractions MGSE4.NF. 2 Compare two fractions with different numerators and different denominators, e.g., by using visual fraction models, by creating common denominators or numerators, or by comparing to a benchmark fraction such as $\frac{1}{2}$. Recognize that comparisons are valid only when the two fractions refer to the same whole. Record the results of comparisons with symbols >, $=$, or <, and justify the conclusions. Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit. MGSE4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms	Build fractions from unit fractions by applying and extending previous understandings of operations on whole numbers. ${ }^{3}$ MGSE4.NF. 3 Understand a fraction $\frac{a}{b}$ with a numerator >1 as a sum of unit fractions $\frac{1}{b}$. a. Understand addition and subtraction of fractions as joining and separating parts referring to the same whole. b. Decompose a fraction into a sum of fractions with the same denominator in more than one way, recording each decomposition by an equation. Justify decompositions, e.g., by using a visual fraction model. Examples: $3 / 8=1 / 8+1 / 8+1 / 8$; $3 / 8=1 / 8+2 / 8 ; 21 / 8=1+1+$ $1 / 8=8 / 8+8 / 8+1 / 8$. c. Add and subtract mixed numbers with like denominators, e.g., by replacing each mixed number with an equivalent fraction, and/or by using properties of operations and the relationship between addition and subtraction. d. Solve word problems involving addition and subtraction of fractions

[^0]
Georgia Department of Education

these problems using equations with a symbol or letter standing for the unknown quantity. Assess the reasonableness of answers using mental computation and estimation strategies including rounding.
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
MGSE4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
answers using mental computation and estimation strategies including rounding. Gain familiarity with factors and multiples. MGSE4.OA.4 Find all factor pairs for a whole number in the range $1-100$. Recognize that a whole number is a multiple of each of its factors. Determine whether a given whole number in the range $1-100$ is a multiple of a given one-digit number. Determine whether a given whole number in the range $1-100$ is prime or composite

Generate and analyze patterns

MGSE4.OA.5 Generate a number or shape pattern that follows a given rule. Identify apparent features of the pattern that were not explicit in the rule itself. Explain informally why the pattern will continue to develop in this way. For example, given the rule "Add 3" and the starting number 1, generate terms in the resulting sequence and observe that the terms appear to alternate between odd and even numbers
Use place value understanding and properties of operations to perform multidigit arithmetic
MGSE4.NBT. 5 Multiply a whole number of up to four digits by a one-digit whole number, and multiply two two-digit numbers, using strategies based on place value and the properties of operations. Illustrate and explain the calculation by using equations, rectangula arrays, and/or area models.
MGSE4.NBT. 6 Find whole-number quotients and remainders with up to four-digit dividends and one-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models.
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.
MGSE4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems involving simple fractions or decimals, and problems that require expressing
of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.
referring to the same whole and having like denominators, e.g., by using visual fraction models and equations to represent the problem. MGSE4.NF. 4 Apply and extend previous understandings of multiplication to multiply a fraction by a whole number e.g., by using a visual such as a number line or area model.
a. Understand a fraction a / b as a multiple of $1 / b$. For example, use a visual fraction model to represent 5/4 as the product $5 \times(1 / 4)$, recording the conclusion by the equation $5 / 4=5 \times(1 / 4)$.
b. Understand a multiple of a / b as a multiple of $1 / b$, and use this understanding to multiply a fraction by a whole number. For example, use a visual fraction model to express $3 \times(2 / 5)$ as $6 \times(1 / 5)$ recognizing this product as 6/5. (In general, $n \times(a / b)=(n \times a) / b$.)
c. Solve word problems involving multiplication of a fraction by a whole number, e.g., by using visual fraction models and equations to represent the problem. For example, if each person at a party will eat $3 / 8$ of a pound of roast beef, and there will be 5 people at the party, how many pounds of roast beef will be needed? Between what two whole numbers does your answer lie?
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit
MGSE4.MD. 2 Use the four operations to solve word problems involving distances, intervals of time, liquid volumes, masses of objects, and money, including problems nvolving simple fractions or decimals, and problems that require expressing measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale.

Georgia Department of Education

	measurements given in a larger unit in terms of a smaller unit. Represent measurement quantities using diagrams such as number line diagrams that feature a measurement scale. MGSE4.MD.8 Recognize area as additive. Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the non- overlapping parts, applying this technique to solve real world problems.		

Georgia Department of Education GSE Fourth Grade

[^1]Richard Woods, State School Superintendent
July 2015
All Rights Reserved

Georgia Department of Education

		Find areas of rectilinear figures by decomposing them into non-overlapping rectangles and adding the areas of the nonoverlapping parts, applying this technique to solve real world problems. Represent and interpret data. MGSE4.MD. 4 Make a line plot to display a data set of measurements in fractions of a unit $\left(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right)$. Solve problems involving addition and subtraction of fractions with common denominators by using information presented in line plots. For example, from a line plot, find and interpret the difference in length between the longest and shortest specimens in an insect collection. Geometric Measurement: understand concepts of angle and measure angles. MGSE4.MD. 5 Recognize angles as geometric shapes that are formed wherever two rays share a common endpoint, and understand concepts of angle measurement: a. An angle is measured with reference to a circle with its center at the common endpoint of the rays, by considering the fraction of the circular arc between the points where the two rays intersect the circle. An angle that turns through $1 / 360$ of a circle is called a "one-degree angle," and can be used to measure angles. b. An angle that turns through n onedegree angles is said to have an angle measure of n degrees. MGSE4.MD. 6 Measure angles in wholenumber degrees using a protractor. Sketch angles of specified measure. MGSE4.MD. 7 Recognize angle measure as additive. When an angle is decomposed into non-overlapping parts, the angle measure of the whole is the sum of the angle measures of the parts. Solve addition and subtraction problems to find unknown angles on a diagram in real world and mathematical problems, e.g., by using an equation with a symbol or letter for the unknown angle measure.	

[^0]: ${ }^{1}$ Grade 4 expectations in this domain are limited to whole numbers less than or equal to $1,000,000$.
 See Glossary, Table 2.
 ${ }^{3}$ Grade 4 expectations in this domain are limited to fractions with denominators of 2, 3, 4, 5, 6, 8, 10, 12, and 100
 Richard Woods, State School Superintendent
 July 2015
 All Rights Reserved

[^1]: requirement at this grade.

